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Abstract

The objective of this work is the development of a ®nite element interface formulation tailored to capture
localization within geometrically nonlinear solid mechanics. In this context, strong discontinuities are considered as
the ®nal failure mechanism within localization problems. The failure kinematics are governed by a jump in the

nonlinear deformation map across a discontinuity surface. In the ®nite element discretization the interface element is
endowed with these kinematics. As a consequence, the interface sti�ness is dominated by the weighted spatial
localization tensor. Based on these developments a localization capturing procedure is advocated and is

computationally highlighted. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Localization; Strong discontinuities; Large inelastic strain; FE-technology

1. Introduction

The intensive accumulation of large inelastic deformations within narrow bands with ®nite width is a

failure mechanism termed localization. Localization is a frequently encountered failure phenomenon in

di�erent materials and is considered as a precursor to discrete fracture. If the typical length scale of the

localization zone is small compared to the characteristic dimensions of the solution domain under

consideration, localized failure may be described as the development of a strong discontinuity.

The kinematical concept of strong discontinuities has been proposed for the computational

description of localization bands in terms of an interface discretization by Larsson et al. (1993) and was

later on adopted by Miehe and SchroÈ der (1994). Along the same lines, e.g. Simo et al. (1993), Larsson
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and Runesson (1996) and Oliver (1996) directly embedded strong discontinuities into the domain of a
®nite element based on the enhanced strain concept. These alternative strategies were also applied to
geometrically linear ¯uid saturated porous media by Larsson et al. (1996) and Steinmann (1999).
Extensions of the strong discontinuity concept to large strain multiplicative elasto-plasticity were
advocated by Armero and Garikipati (1996) and Steinmann et al. (1997) from where we borrow
terminology and notation.

It is the aim of this contribution to incorporate regularized strong discontinuities as a kinematic
model for localization bands within the geometrically nonlinear description of an inelastic solid. To this
end we follow the strategy of incorporating interface elements along element edges which have to be
aligned with the possible localization band in advance. Thereby, the central question is how to design
the interface constitutive behaviour?

It is obvious that we basically have to set up a relation between the spatial traction vector acting on
the interface and the relative deformation of the two interface sides, whereby certainly, alternative
selections are possible. Di�erent, basically geometrically linear, interface discretizations for various
purposes have been proposed and analysed, see e.g. Gens et al. (1988) and Schellekens and de Borst
(1993) and references therein. Here, for its conceptional beauty and simplicity, we shall extend the
geometrically linear proposal by Larsson et al. (1993) which is based on a kinematic assumption for the
interface strains and which results essentially in a projection of the constitutive behaviour in the
continuous ambient domain onto the discontinuity. Thus, the construction of a separate interface
constitutive law for the traction vector is circumvented.

The manuscript is organized as follows: ®rst, the set-up of the boundary value problem of a
geometrically nonlinear solid is reviewed in strong form. Then strong discontinuities at large strains
together with their regularized counterparts are characterized kinematically. Based on the strong form of
the BVP the corresponding weak form is established. To this end, we consider ®rstly, continuity of the
deformation map and secondly, the additional contribution to the virtual work expression which is due
to a discontinuous deformation map. In the sequel we are concerned with the formulation of the
interface constitutive law based on the kinematic structure of a regularized strong discontinuity. Next,
aspects of the linearization and the discretization into a ®nite element formulation are discussed. Finally,
after emphasizing a three step localization capturing procedure, conceptional examples demonstrate the
quantitative and qualitative performance of the advocated strategy for localization problems at large
strains.

2. Strong form of a geometrically nonlinear BVP

To set the stage we brie¯y reiterate the boundary value problem of geometrically nonlinear continuum
mechanics in strong form.

Let BWRndim denote the current con®guration occupied by a solid with reference placements in B0W
Rndim denoted by X. The boundary @B of B with outward normal n is subdivided into disjoint parts
@B=@Bx [ @Bt with @Bx\@Bt=; where either Neumann or Dirichlet boundary conditions are
prescribed. The current placements of the solid are described by the nonlinear deformation map
jjj: B04B with x � jjj�X�: The current density is denoted by r: B4 R, distributed body forces per unit
mass are given by the vector ®eld b: B 4 Rndim. The symmetric Cauchy stress and the nonsymmetric
deformation gradient together with its determinant are introduced as sss: B4Rndim �ndim and
F: B04Rndim �ndim with J = det F. Then the boundary value problem of geometrically nonliner
continuum mechanics in the spatial setting

div ssst � rb � 0 in B
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sssÿ ssst � 0 in B

Fÿ rXjjj � 0 in B0

sssÿ J ÿ1ttt�F, . . . , � � 0 in B

xÿ xp � 0 on @Bx

ssst � nÿ tp � 0 on @Bt �1�
consists of the balance of linear momentum in Eq. (1)1, the balance of angular momentum in Eq. (1)2,
the kinematic relations de®ning the deformation gradient in Eq. (1)3, the generic constitutive law for the
Kirchho� stress ttt in Eq. (1)4 together with the Dirichlet and Neumann boundary conditions for the
deformation and the spatial traction vector t in Eqs. (1)5 and (1)6.

3. Concept of strong discontinuities at large strains

This section is devoted to the kinematic characterization of strong discontinuities. Therefore, we ®rst
give a brief account on material surfaces. Then we discuss strong discontinuities across material surfaces
and the resulting multiplicative decomposition of the deformation gradient into a singular and a regular
part. Finally, strong discontinuities are regularized by substituting the discontinuity surface by a band
with small but ®nite width.

3.1. Characterization of material surfaces

As a preliminary to the subsequent discussion, consider the monotonic function S(X): R34 R de®ned
on the reference con®guration B0. The material surface G0 attached to B0 with unit normal Ns, as
shown in Fig. 1, is then de®ned as

S�X� � 0 and Ns � jÿ10 rXS with j0 �j rXS j : �2�

Fig. 1. Regularized discontinuity across a material surface.
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The surface subdivides B0 into Bÿ0 and B+
0 with the unit normal Ns pointing from Bÿ0 to B+

0 . During
the deformation x � jjj�X� the surface G0 and the unit normal Ns are convected to the surface G and the
unit normal ns in the spatial con®guration B via the relations

s�x� � S�jjjÿ1�x�� � 0 and ns � jÿ1rxs � j0
j

Ns � Fÿ1 with j �j rxs j : �3�

Remark. Since the surface G0 is assumed to be attached to B0, its material time derivative is S
.
=0, and

the convective velocity c of the spatial surface G is given by c � jÿ1@ ts � ÿns � @ tjjj:

3.2. Kinematics of strong discontinuities

Next, a possibly discontinuous deformation map jjj�X� that is spatially smooth except across G0 is
expressed as

jjj�X� � jjjc�X� �HS�X�(jjj), �4�
with jjjc�X� the spatially continuous part of the deformation map. Moreover, HS(X) is the Heaviside
function centred on G0, and (jjj) is the jump of jjj�X� across G0. This jump is locally assumed to be
preserved along G0 in the sense that (jjj) � const along G0. Thereby, the jump (jjj) is de®ned as

(jjj) � lim E40�jjj�X0 � ENs� ÿ jjj�X0 ÿ ENs�� where X0 2 G0: �5�
The Heaviside function HS(X) on G0 is de®ned via the function H(.) as

HS�X� � H�S�X�� �
8<:
0 iff X 2Bÿ0
1 iff X 2 G0

1 iff X 2B�0
with H��� �

�
0 8��� < 0
1 8���r0

: �6�

To simplify notation we shall in the sequel omit the arguments of all ®eld quantities if there is no risk of
confusion.

In order to obtain the singular deformation gradient associated with jjj in Eq. (4), the scalar-valued
Dirac-delta distribution dS on G0 is de®ned via the function d(.) as

dS � d�S�X�� �
8<:
0 iff X 2Bÿ0
1 iff X 2 G0

0 iff X 2B�0
with d��� �

�1 8��� � 0
0 8���6�0 : �7�

Moreover, the vector-valued Dirac-delta distribution dddS and the Heaviside function HS on G0 are related
in a distributional sense by�

B0

��� � dddS dV �
�

B0

��� � rXHS dV �
�
G0

��� � Ns dA 8��� 2 �C10 �B0��ndim ���: �8�

The last relation follows from integration by parts while taking into account the de®nition of HS and
C10 (B0). Therefore, the relation between dS and HS on G0 may be stated as the functional identity

rXHS � dddS with rXHS � j0dSNs: �9�

P. Steinmann, P. Betsch / International Journal of Solids and Structures 37 (2000) 4061±40824064



Since (jjj) is spatially constant along G0, we may express the material deformation gradient, which is
singular along the discontinuity surface, as a multiplicative decomposition into a regular and a singular
part

F � Fd � Fc � Fc � j0dS(jjj)
 Ns with Fd � I � jdS(jjj)
 ns: �10�
Here, Fc denotes the continuous contribution to F and the spatial normal ns on G is computed with the
regular part of the deformation gradient as

ns � j0
j

Ns � Fÿ1c : �11�

3.3. Regularization of strong discontinuities

For a regularization of the singularity terms, we assume that two parallel surfaces Gÿ0 and G+
0 with

the same unit normal Ns surround a narrow band-shaped domain Bd
0 of width d0, see Fig. 1, with

Bd
0 �

�
X � X0 � ENs j X0 2 G0, ÿ d0

2
RERd0

2

�
: �12�

Thereby, d0 is much smaller than a typical geometrical length scale of the domain B0. We may now
introduce the regularized Heaviside function HR and Dirac-delta distribution dR as

HR �

8>>>><>>>>:
0 iff X 2Bÿ0
1

2
� E

d0
iff X 2Bd

0

1 iff X 2B�0

and dR �

8><>:
1

j0d0
iff X 2Bd

0

0 iff X=2Bd
0

: �13�

Moreover, the regularized vector-valued Dirac-delta distribution dddR is de®ned as

dddR � j0dRNs �

8><>:
1

d0
Ns iff X 2Bd

0

0 iff X=2Bd
0

: �14�

Thereby, the regularized vector-valued Dirac-delta distribution satis®es the following relation�
B0

��� � dddR dV � 1

d0

�
Bd

0

��� � Ns dV4

�
G0

��� � Ns dA for d040: �15�

This result also holds for a ®nite band width d0 if we assume that the quantity (.) does not vary across
the band.

The regularized C 0-continuous deformation jjj is then expressed in terms of the regularized Heaviside
function HR as

jjj � jjjc �HR(jjj): �16�
It follows immediately that the regularized version of F may be expressed as in Eq. (10) by simply
replacing dS with dR. Thus, considering the restriction to the band-shaped domain Bd

0 renders the
regularized F, which is discontinuous, as
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F � Fd � Fc � Fc � 1

d0
(jjj)
 Ns with Fd � I � 1

d
(jjj)
 ns: �17�

Here we introduced the spatial thickness d of the localization band via the relation jd=j0d0. Please note
again, the multiplicative representation of F.

Remark. In the small strain limit the linear strain tensor EEE � rsym
x u, with u the regularized discontinuous

displacement ®eld, splits additively into a continuous and a discontinuous contribution

EEE � EEEc � EEEd with EEEd � 1

d
�(u)
 ns�sym: �18�

Here, the band thickness d is considered a constant quantity.

4. Weak form of a geometrically nonlinear BVP

As a prerequisite for a ®nite element discretization the nonlinear boundary value problem has to be
reformulated in weak form. Thereby, an additional contribution to the virtual work expression has to be
considered if strong discontinuities in the nonlinear deformation map are taken into account. Therefore,
we ®rst review the weak form for the case of a continuous deformation map. Then the additional
contribution which arises from internal boundaries in the case of strong discontinuities is given.

4.1. Continuous deformation map: no strong discontinuities

The balance of linear momentum in Eq. (1)1 and the Neumann boundary conditions in Eq. (1)6 are
tested by a virtual displacement djjj to render the standard virtual work expression

G ext ÿ G int � 0 8djjj 2 �H 1
0�B��ndim : �19�

Here, the internal and external contributions G int and G ext to the virtual work expand into the standard
representations in terms of spatial quantities

G int �
�

B

rxdjjj:sss dv and G ext �
�

B

rdjjj � b da�
�
@Bt

djjj � tp dv: �20�

In the sequel the discretization of these two contributions to the weak form renders the standard ®nite
element formulation.

4.2. Discontinuous deformation map: strong discontinuities

In order to account for strong discontinuities let the current domain B be split by an internal
boundary G with surface normal ns into the subdomains B+ and Bÿ, whereby ns=nÿs =ÿn+s points into
B+. Recall that jumps of ®eld quantities (.) across G are denoted by ((.))=(.)+ÿ(.)ÿ. We then
conclude that the test function or rather virtual displacement experiences a discontinuity (djjj) across G.
Taking into account the traction continuity ts=tÿs =ÿt+s , compare Fig. 1, we obtain the weak form of
the balance of linear momentum in Eq. (1)1 and the Neumann boundary conditions in Eq. (1)6 for the
case of an internal boundary as
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G ext ÿ G int ÿ G dis � 0 8djjj 2 �BD0�B��ndim : �21�
Thereby, the additional virtual work contribution G dis due to the discontinuity expressed by spatial
quantities follows as

G dis �
�
G
(djjj) � ts da: �22�

Clearly, the standard contributions G int and G ext are now de®ned on each subdomain separately

G int � G int�Bÿ� � G int�B�� and G ext � G ext�Bÿ� � G ext�B��: �23�
In the sequel the discretization of this extra contribution to the weak form renders the interface ®nite
element formulation.

5. Geometrically nonlinear interface constitutive law

In this section we are concerned with the formulation of a constitutive law, which we shall,
henceforth, address as the interface constitutive law, for the spatial traction vector ts transmitted across
the discontinuity G. To this end, in addition to the observation that the virtual displacement experiences
a discontinuity (djjj) across G, we incorporate the deformation map discontinuity (jjj): Thereby, the key
step is the identi®cation of the appropriate structure for the driving quantity for ts, whereby di�erent
choices are conceptually possible.

Here we shall extend the geometrically linear proposal by Larsson et al. (1993) to the geometrically
nonlinear case. This concept essentially results in a projection of the constitutive behaviour in the
continuous neighbouring domain B2 into the discontinuity across G.

To this end, motivated by the concept of regularized strong discontinuities above, we postulate that
the deformation map jump across G results in the relative deformation gradient Fd=F�Fÿ1c within the
regularized discontinuity. Thereby, Fd is characterized by the dyadic structure of (jjj) and the normal ns
together with the spatial length scale d

Fd � I � 1

d
(jjj)
 ns: �24�

Here, the length d might either be interpreted as the regularization parameter within the concept of
regularized strong discontinuities or, in view of the discussion above, rather as the current width of the
discontinuity. The interface deformation gradient and its inverse are alternatively expressed in terms of
the oriented surface element das=ns da and the abbreviations Vd=d da and vd�Vd�(jjj) � das as

Fd � I � 1

Vd
(jjj)
 das and Fÿ1d � I ÿ 1

vd
(jjj)
 das: �25�

Then, the traction vector is a projection of the standard stress response as given by the constitutive law
in Eq. (1)4 de®ned in B2 onto the discontinuity across G

ts � J ÿ1d ttt�Fe
d� � ns, �26�

whereby, in the frame of multiplicative elasto-plasticity Fe
d de®ned the elastic part of Fd=Fe

d � Fp
d.

Remark. In the geometrically linear case Larsson et al. (1993) considered EEEd � �1=d��(u)
 ns�sym as the
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primary kinematic quantity within the regularized discontinuity. Therefore, they proposed to compute
the interface traction ts from the relative strain EEEd� EEEe

d� EEEp
d, e.g. for an elasto-plastic material from the

projection of sss�EEEe
d� with the interface normal ns. As a consequence, upon linearization the tangent law

for the traction vector involved the second-order localization tensor qep with qep� [.]=[EEep: [[.]
 ns]] � ns,
i.e. the double contraction of the elasto-plastic fourth-order tangent operator EEep with the normal ns,
which characterises the localization properties of an elasto-plastic solid. Thereby, for the computation of
qep the contractions with ns are performed with respect to the second and fourth index of EEep.

6. Linearization of the weak form

In this section we consider the linearization of the contribution to the virtual work G dis due to the
discontinuity. Thereby, linearizations are denoted like material time derivatives by a superposed dot

Fig. 2. Softening shear layer at larger strains.

Fig. 3. Geometry and discretizations of chip cutting problem.

P. Steinmann, P. Betsch / International Journal of Solids and Structures 37 (2000) 4061±40824068



_G
dis �

�
G
(djjj) � _ts da �

�
G
(djjj) � _

J ÿ1d ttt � das with das � ns da: �27�

The material time derivative of the Kirchho� stress _ttt � Eep
2 : ld� ttt � lt

d� ld � ttt may be expressed in terms
of the spatial tangent operator Eep

2 and correction terms, thus we obtain

_
J ÿ1d ttt � das � J ÿ1d �Eep

2 :ld � ttt � lt
d� � das � �ld ÿ �ld:I�I� � ts da� J ÿ1d ttt � _das: �28�

Here, the spatial interface velocity gradient ld is based on the interface deformation gradient Fd and its
inverse and follows after tedious algebra by setting Vd=d da=d0 dA as

ld � 1

Vd
(jjj)
 _das � 1

vd

�
_(jjj)ÿ 1

Vd
�(jjj)
 (jjj)� � _das

�

 das: �29�

The determinant Jd of the interface deformation gradient together with its linearization are given by

Jd � vd=Vd and _Jd � Jdld: I � 1

Vd
�das � _(jjj)� (jjj) � _das�: �30�

With these preliminaries at hand we obtain for the contribution of the tangent operator in Eq. (28)

J ÿ1d �Eep
2 :ld� � das � 1

d
qep
j � _das � da2

vd
qep
2 �

�
_(jjj)ÿ 1

Vd
�(jjj)
 (jjj)� � _das

�
where we introduced the abbreviation qepj and the spatial localization tensor qep2 as the double

Fig. 4. Deformed con®gurations and plastic zones for 10, 20 100, 200 P2 elements.
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contraction of the tangent operator EEep
2

Jdq
ep
j � ��� � �Eep

2 :�(jjj)
 ����� � ns and Jdq
ep
2 � ��� � �Eep

2 :���� 
 ns�� � ns: �31�

Thereby, for the computation of qepj the contractions with ns and (jjj) are performed with respect to the
second and third index of EEep

2 , for the computation of qep2 the double contraction with ns is performed
with respect to the second and fourth index of EEep

2 . Next, the second term in eq. (28) is expanded into

J ÿ1d ttt � lt
d � das � da

vd

�
�ts 
 das� � _(jjj)�

�
(jjj) � nsttt� Vd ÿ vd

Vd
ts 
 (jjj)

�
� _das

�
:

Moreover, with the normal Cauchy stress ss=ns�ts acting on the interface we compute

ld � ts da � 1

d
�(jjj)
 ts� � _das � da2

vd
ss

�
_(jjj)ÿ 1

Vd
�(jjj)
 (jjj)� � _das

�
:

Likewise, the next term in Eq. (28) is represented as

ÿ�ld:I�ts da � ÿda

vd
��ts 
 das� � _(jjj)� �ts 
 (jjj)� � _das�:

Finally, combining all terms in Eq. (28) and abbreviating the spatial localization tensor into

Fig. 5. Load±de¯ection curves for 10, 20, 100, 200 P2 elements.
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qep1 =qep2 +ssI renders the sti�ness contribution

_ts da � da2

vd
qep
1 �

_(jjj)� 1

d

�
tttd� 2�(jjj)
 ts�skw � qep

j ÿ
da

vd
qep
1 � �(jjj)
 (jjj)�

�
� _das �32�

which is divided into increments of the deformation map jump (jjj) and the vector valued area element
das of the interface. Thus, the interface sti�ness proves to be essentially characterized by the spatial
localization tensor qep1 and the correction terms to account for a changing das.

7. Spatial discretization of the weak form

For the spatial discretization of the interface element we resort to the isoparametric concept. Thereby,
the geometry of the interface element, e.g. in the spatial setting B, is a mdim-dimensional Riemannian
manifold G embedded in Rndim with mdim=ndimÿ1 and is mapped from the isoparametric domain of
dimension mdim to the physical space by x � xh�xxx�: [ÿ1, 1]mdim 4 Rndim. Then the covariant spatial base
vectors, i.e. the tangent vectors to the isoparametric coordinate lines, are given as ga=xh,xa together
with the covariant spatial metric coe�cients gab=ga � gb with a, b=1, . . . , mdim. As a consequence,
the in®nitesimal length or area elements in the isoparametric domain [ÿ1, 1]mdim are mapped to G by
jh � �����������������

det�gab�
p

: Accordingly, the geometry in B0 is characterized by Ga=Xh
,xa, Gab=Ga �Gb and

jh0 �
�����������������
det�Gab�

p
:

Without loss of generality we consider in the sequel the case of a one-dimensional line interface within
a two-dimensional ambient space. Here, the geometry is described by shape functions Nk(x )

Fig. 6. Deformed con®gurations and plastic zones for 10, 20, 100, 200 P2 (and 1 I1) elements d0=20.
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interpolating the reference and the current node point coordinates Xk and xk, thus in particular the
spatial covariant base vector g1 and the corresponding Jacobian j h follow as

Xh �
Xnen
k�1

NkXk, xh �
Xnen
k�1

Nkxk �) g1 �
Xnen
k�1

Nk
,xxk and jh � ������

g11
p

: �33�

Moreover, the same expansions are selected for the approximations to the deformation map jump and
its variation

(jjj)h �
Xnen
k�1

Nk(jjj)k and (djjj)h �
Xnen
k�1

Nk(djjj)k: �34�

Consequently, the spatial normal ns to the interface and the spatial area element da are simply expressed
as

ns � 1

jh
e3 � g1 and da � jh dx�)das � e3 � g1 dx: �35�

Fig. 7. Load±de¯ection curves for 10, 20, 100, 200 P2 (and 1 I1) elements d0=20.
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The current regularization parameter is computed from d=d0j
h
0/j

h and the linearized increments of the
deformation map jump (jjj) and the vector valued area element das follow as

_(jjj) �
Xnen
k�1

Nk _(jjj)k and _das �
Xnen
k�1

Nk
,xe3 � Çxk dx: �36�

Remark. The extension to a two-dimensional surface interface within a three-dimensional ambient space
is straightforward. In particular, the spatial normal ns and the linearization of the vector valued area
element das are given by

ns � 1

jh
g1 � g2 �) _das �

Xnen
k�1
�Nk

,x2
g1 ÿNk

,x1
g2� � Çxk dx1 dx2:

8. Localization capturing FE-procedure

In the following we sketch a three step, model adaptive, procedure to capture localization within the
frame of a regularized deformation map discontinuity at large inelastic strains which incorporates the

Fig. 8. Deformed con®gurations and plastic zones for 10, 20, 100, 200 P2 (and 1 I1) elements d0=10.
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interface element formulation proposed above. This type of procedure was originally proposed and
described in detail by Larsson (1995) for the geometrically linear case. Thereby, the three steps consist
of:

1. First we carry out a computation based on an unbiased, possibly homogeneous discretization with
our favourite element expansions, e.g. biquadratic Q2 quads, without any a priori information about
the orientation of a possible localization band. From a mesh densi®cation study and the pointwise
diagnosis of the localization tensor we make sure that the problem at hand renders pathological mesh
dependent solutions. Moreover, we extract the global placement and orientation of the resolved
localization band.

2. Based on the a posteriori information gained from Step 1 we set up an adapted mesh were the
element edges are aligned with the localization band. Obviously, for the case of curved discontinuities
this task demands a powerful mesh generator, for example based on a pavement strategy, which is
able to take into account internal boundaries, see Larsson (1995). Nevertheless, this is a technical
issue which shall not be addressed in this work. In the following examples we invoke quadratic
triangular P2 element which are here mainly suggested by the geometry of the planar solution
domain under consideration. Clearly, there are no conceptual restrictions with respect to the element
choice. Then, in Step 2, a recalculation of the problem based on the aligned mesh typically renders
results where the localization band is resolved with a width spanning over one element row. Again a
mesh densi®cation study together with the pointwise diagnosis of the localization tensor reveals the

Fig. 9. Load±de¯ection curves for 10, 20, 100, 200 P2 (and 1 I1) elements d0=10.
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pathological mesh dependence due to, e.g. in the quasi-static case, the underlying loss of ellipticity.
3. Finally, we apply the concept alluded to above in order to account for regularized deformation map

discontinuities at large inelastic strains in the solution. To this end, interface elements containing a
regularized deformation map discontinuity with reference width d0 are incorporated into the aligned
mesh along the resolved localization band. Recall that the interface constitutive law is a projection of
the constitutive behaviour in the ambient continuous domain onto the discontinuity. The
recalculation of the problem in this step renders a mesh independent solution which is governed by
the reference regularization parameter d0 and enjoys the characteristics of a true discontinuity. Please
note that Step 3 characterizes indeed, a model change from a continuous to a discontinuous solution.

9. Examples

In the following examples the isotropic hyperelasto-plastic material is assumed to obey the von Mises
yield condition, which incorporates saturation-type hardening, and associated ¯ow and hardening rules
of multiplicative hyperelasto-plasticity together with a logarithmic hyperelastic response:

F�ttt, k� �j dev ttt j ÿ
����
2

3

r
�Y0 � �Y1 ÿ Y0��1ÿ exp�ÿmk�� �Hk�

Fig. 10. Deformed con®gurations and plastic zones for 10, 20, 100, 200 P2 (and 1 I1) elements d0=2.

P. Steinmann, P. Betsch / International Journal of Solids and Structures 37 (2000) 4061±4082 4075



_�Fp�t � Fp � gFt � @F
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����
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r
g

ttt � K ln J eI � G dev ln�Fe � �Fe�t�:
The ¯ow and hardening rule are integrated implicity by the exponential map and the Euler backward
integrator, respectively. The consistent algorithmic tangent operator is invoked to ensure quadratic rate
of convergence for the global Newton equilibrium iterations.

9.1. Localization in an in®nite shear layer

First we consider the in®nite shear layer in Fig. 2, in order to study the in¯uence of the regularization
parameter d0 and the mesh spacing. To this end a shear layer of height h=100 mm (and computational
width 10 mm) is discretized into 10, 20, 100 and 200 triangular P2 elements with quadratic expansions.
Correspondingly, one element row has a height of 20, 10, 2 and 1 mm. The lateral boundary conditions
are set such that an in®nite layer is modelled. The quasi-static shear force loading is applied to the top
surface by arclength control until the load carrying capacity is completely exhausted.

The material parameters are selected as: bulk modulus K=164.21 kN/mm2, shear modulus G=80.19
kN/mm2, initial and saturation yield stress Y0=0.450 kN/mm2 and Y1=0.715 kN/mm2, exponential
hardening modulus m= 16.93 and linear softening modulus H=ÿ1.2924 kN/mm2. Here, in addition to

Fig. 11. Load±de¯ection curves for 10, 20, 100, 200 P2 (and 1 I1) elements d0=2.
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saturation-type hardening, linear softening behaviour is incorporated as a phenomenological description
of damage e�ects.

For the discretization in only continuous P2 elements without incorporation of an interface element,
where localization is triggered by reducing the initial yield strength in one element row to Y0=0.445
kN/mm2. The resulting deformed con®gurations and the distributions of the hardening variable k are
presented in Fig. 4 for the sequence of re®ned meshes. The corresponding shear load±de¯ection curves
are given in Fig. 5. It is clearly visible that ®ner meshes render steeper post-peak responses together with
narrowing shear band widths. Thereby, due to the perfect alignment of the element edges with the
localization zone, the shear band is resolved by only one element row.

Next an I2 interface element is introduced into the discretization and the reference regularization
parameter is initially set to d0=20 mm which corresponds to the coarsest mesh spacing of the previous
continuous computations into 10 elements. The resulting deformed con®gurations are shown in Fig. 6
for computations with the sequence of re®ned meshes. The corresponding shear load±de¯ection curves
are given in Fig. 7. Apparently, the response is completely una�ected by the mesh spacing, moreover,
the post-peak response coincides basically with the slope of the load±de¯ection curve of that continuous
computation where the mesh spacing corresponds with d0. Nevertheless, since the plastic zones do not
occupy the same volume of the specimen for the continuous and the discontinuous discretization, the
peaks of the shear load±de¯ection curves do not agree. The plastic zone localizes completely in the
interface elements. Therefore, it would be invisible. Nevertheless, Fig. 6 displays the hardening variable
after projection to the neighbouring continuum elements.

The respective results for computations with d0= 10, 2 and 1 mm corresponding to the mesh spacing
of continuous discretizations into 20, 100 and 200 triangular P2 elements are given in Figs. 8±13. These
results underline again that the response of the discontinuous discretization is completely una�ected by

Fig. 12. Deformed con®gurations and plastic zones for 10, 20, 100, 200 P2 (and 1 I1) elements d0=1.
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the surrounding mesh spacing. Likewise, the post-peak response agrees essentially with the slope of the
shear load±de¯ection curve of that continuous computation where the mesh spacing corresponds with
d0. For small d0 even the peaks of the shear load±de¯ection curves coincide for the continuous and the
discontinuous discretization, since then the plastic zones occupy roughly the same volume of the
specimen.

9.2. Cutting a chip from a square

The next example demonstrates the model adaptive strategy for a representative plane strain BVP,
whereby a square panel is loaded by a rigid tool such that a triangular chip is cut (see Fig. 3). The
homogeneous square panel has a side length of l= 10 mm, the rigid tool spans over 6 mm at the right
part of the top surface. The loading is applied quasi-statically to the rigid tool by displacement control
until a maximum displacement of 1 mm is obtained.

The material parameters are selected as: bulk modulus K=164.21 kN/mm2, shear modulus G=80.19
kN/mm2, initial and saturation yield stress Y0=Y1=0.45 kN/mm2 and linear softening modulus
H=ÿ0.12924 kN/mm2. These material constants incorporate a linear softening behaviour into the
constitutive description as a phenomenological model of damage e�ects.

In Step 1 we start the calculation with homogeneous discretizations invoking the Q2 bilinear element
expansion. Fig. 14 shows the deformed con®guration and the distribution of the hardening variable k at
the end of the loading history for a computation with 20 � 20 elements. Typically for a localization

Fig. 13. Load±de¯ection curves for 10, 20, 100, 200 P2 (and 1 I1) elements d0=1.
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problem, the plastic zone indicates the pronounced accumulation of inelastic strains in a narrow band.
Thereby, a mesh densi®cation study proves the decrease of the resolved shear band width and the
increase of the total amount of plastic strain within the band as mesh spacing is reduced. Apparently,
the upper triangular part of the specimen tends to move more or less like a rigid body. Nevertheless,
this failure mode is not fully developed due to the continuous discretization of the deformation map.

Next due to the simple geometry of the predicted localization band in Step 1, the mesh alignment in
Step 2 is favourably accomplished by triangular P2 element expansions with a 10 � 10 discretization
corresponding to 200 elements. It is well-known that aligned meshes are able to capture a narrow
localization band (see Steinmann and Willam, 1994) which here is neatly re¯ected by the distribution of
the hardening variable k and the deformed con®guration in Fig. 15. Fig. 15 also clearly highlights the
development of a failure mode with the minimum localization band width resolvable by the given
discretization, i.e. one element row. Thus, mesh re®nement would render pathological mesh dependence
with respect to the localization band width and consequently with respect to the overall load carrying
capacity.

Finally, in Step 3, the additional interface I2 elements with quadratic expansions are incorporated into
the discretization along the resolved shear band. Here, the reference value of the regularization
parameter is set to d0=l/100. Obviously, this step changes the underlying model assumption to the
possibility of true discontinuities in the deformation map as demonstrated for the deformed
con®guration in Fig. 16. Now the solution domain is truly split into two parts sliding almost rigidly
along the discontinuity. Thereby, the resulting plastic zone, plotted in Fig. 16 after projection to the

Fig. 14. Deformed con®guration and plastic zone 20� 20 Q2 discretization.
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neighbouring continuum elements, localizes completely in the interface elements with a tremendous total
amount for the hardening variable k.

10. Summary

The objective of this work has been the development of a ®nite element interface formulation capable
of capturing localization in geometrically nonlinear solid mechanics. Thereby, it is understood that
strong discontinuities characterize the ®nal failure mechanism within localization problems.

The essential ingredient of the proposed formulation is the incorporation of the failure kinematics,
which are here governed by the jump in the nonlinear deformation map along the discontinuity, into the
®nite element formulation. As one possibility for a suitable ®nite element discretization an interface
element, which has to be aligned a priori with the anticipated localization band in the ®nite element
mesh, is endowed with these failure kinematics. Interestingly enough, it turns out that the resulting
interface sti�ness is dominated by the weighted spatial localization tensor. Guided by the above
developments a three step, model adaptive procedure based on the concept of regularized strong
discontinuities is motivated and is applied to localization computations. The results neatly indicate the
applicability of the concept advocated in this contribution.

In summary, this work is considered as a conceptual point of departure for the description of
localization based on the concept of regularized strong discontinuities in the geometrically nonlinear
regime. Clearly, possible extensions are on the one hand the direct inclusion of the discontinuity within

Fig. 15. Deformed con®guration and plastic zone 10� 10 P2 discretization.
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the domain of a ®nite element and on the other hand the selection of interface constitutive laws which
are independent from the constitutive description in the continuous solution domains. Moreover, the
proposed formulation could conceptually be extended within a regularized continuum description in
order to capture the ultimate, i.e. the discontinuous stage of a failure process.
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